Domination mappings into the hamming ball: Existence, constructions, and algorithms
نویسندگان
چکیده
<p style='text-indent:20px;'>The Hamming ball of radius <inline-formula><tex-math id="M1">\begin{document}$ w $\end{document}</tex-math></inline-formula> in id="M2">\begin{document}$ \{0,1\}^n is the set id="M3">\begin{document}$ \mathcal{B}(n,w) all binary words length id="M4">\begin{document}$ n and weight at most id="M5">\begin{document}$ $\end{document}</tex-math></inline-formula>. We consider injective mappings id="M6">\begin{document}$ \varphi : \{0,1\}^m \to with following <i>domination property:</i> every position id="M7">\begin{document}$ j \in [n] dominated by some id="M8">\begin{document}$ i [m] $\end{document}</tex-math></inline-formula>, sense that if id="M9">\begin{document}$ id="M10">\begin{document}$ {\mathit{\boldsymbol{x}}} "switched off" (equal <i>zero</i>), then necessarily id="M11">\begin{document}$ its image id="M12">\begin{document}$ \varphi({\mathit{\boldsymbol{x}}}) switched off. This property may be described more precisely terms a bipartite graph</i> id="M13">\begin{document}$ G = \bigl([m] \cup [n], E\bigr) no isolated vertices; for id="M14">\begin{document}$ (i,j) E id="M15">\begin{document}$ {\mathit{\boldsymbol{x}}}\in we require id="M16">\begin{document}$ x_i 0 implies id="M17">\begin{document}$ y_j where id="M18">\begin{document}$ {\mathit{\boldsymbol{y}}} Although such domination recently found applications context coding high-performance interconnects, to best our knowledge, they were not previously studied. The concept mapping thus interesting from both practical combinatorial points view.</p><p style='text-indent:20px;'>In this paper, begin simple necessary conditions existence an <i><inline-formula><tex-math id="M19">\begin{document}$ (m,n,w) $\end{document}</tex-math></inline-formula>-domination id="M20">\begin{document}$ $\end{document}</tex-math></inline-formula></i>. provide several explicit constructions mappings, which show are also sufficient when id="M21">\begin{document}$ 1 id="M22">\begin{document}$ 2 id="M23">\begin{document}$ m odd, or id="M24">\begin{document}$ \leqslant 3w One main results herein proof trivial condition id="M25">\begin{document}$ | \mathcal{B}(n,w)| \geqslant 2^m is, fact, id="M26">\begin{document}$ whenever id="M27">\begin{document}$ sufficiently large. present polynomial-time algorithm that, given any id="M28">\begin{document}$ id="M29">\begin{document}$ id="M30">\begin{document}$ determines whether id="M31">\begin{document}$ exists graph equitable degree distribution.</p>
منابع مشابه
Code constructions and existence bounds for relative generalized Hamming weight
The relative generalized Hamming weight (RGHW) of a linear code C and a subcode C1 is an extension of generalized Hamming weight. The concept was firstly used to protect messages from an adversary in the wiretap channel of type II with illegitimate parties. It was also applied to the wiretap network II for secrecy control of network coding and to trellis-based decoding algorithms for complexity...
متن کاملThe Hamming Ball Sampler
We introduce the Hamming ball sampler, a novel Markov chain Monte Carlo algorithm, for efficient inference in statistical models involving high-dimensional discrete state spaces. The sampling scheme uses an auxiliary variable construction that adaptively truncates the model space allowing iterative exploration of the full model space. The approach generalizes conventional Gibbs sampling schemes...
متن کاملQuasiregular Mappings from a Punctured Ball into Compact Manifolds
We study quasiregular mappings from a punctured unit ball of the Euclidean n-space into compact manifolds. We show that a quasiregular mapping has a limit in the point of punctuation whenever the dimension of the cohomology ring of the compact manifold exceeds a bound given in terms of the dimension and the distortion constant of the mapping.
متن کاملHolomorphic Mappings from the Ball and Polydisc
Introduction. The holomorphic self-homeomorphisms ("automorphisms") of the open unit ball B, in ~L TM have long been known [1] they are given by certain rational functions which are holomorphic on a neighborhood of Bn and induce a homeomorphism of the boundary, bB,, of the ball. Our first result can be viewed as a local characterization of these automorphisms: For n > 1, a nonconstant holomorph...
متن کاملParabolic starlike mappings of the unit ball $B^n$
Let $f$ be a locally univalent function on the unit disk $U$. We consider the normalized extensions of $f$ to the Euclidean unit ball $B^nsubseteqmathbb{C}^n$ given by $$Phi_{n,gamma}(f)(z)=left(f(z_1),(f'(z_1))^gammahat{z}right),$$ where $gammain[0,1/2]$, $z=(z_1,hat{z})in B^n$ and $$Psi_{n,beta}(f)(z)=left(f(z_1),(frac{f(z_1)}{z_1})^betahat{z}right),$$ in which $betain[0,1]$, $f(z_1)neq 0$ a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics of Communications
سال: 2021
ISSN: ['1930-5346', '1930-5338']
DOI: https://doi.org/10.3934/amc.2021036